
 B4A Scrolling Grid 1 / 8

B4A Scrolling Grid using CustomListViews and a Horizontal ScrollView

Have you ever wondered how you can make a CustomListView scroll horizontally?

Well, in this small tutorial you can read all about it.

Start the B4A IDE environment and make a new project (possible name: scroll_grid) and

select B4Xpages. Set in the Main tab the application label to Scroll Grid and in the project

Build Configurations give the package a good name: b4a.scroll_grid.

Click on the B4XMainPage tab in the IDE.

Let’s start by making a layout. Go to the designer and add 3 CustomListViews (XUI Views

library!). And below the CustomListViews 1 and 3 add a Horizontal ScrollView that has the

same size as the 2 CustomListViews. Give the CustomListViews a short name: clv1, clv2, clv3

and name the HorizontalScrollView: hsv1. Make sure that the hsv1 is the last in the list of

views (see Views Tree) so it will not cover the clv1 and clv3.

clv1: left 50, height 50, horizontal anchors both sides

clv2: top 50, width 50, vertical anchors both sides

clv3: left 50, top 50, anchors on all sides

hsv1: left 50, anchors on all sides

 B4A Scrolling Grid 2 / 8

Now let’s generate the members.

Check the following:

✓ clv1 and its ItemClick event

✓ clv2 and its ItemClick and ScrollChanged events

✓ clv3 and its ItemClick and ScrollChanged events

✓ hsv1

And then it is time to starting coding.

Add the following declarations of variables to the Class_Globals subroutine:

 Private reclst As List

 Private delim As String

 Private devheight As Int

 Private totalwidth As Int

 Private totalheight As Int

 Private numrows As Int

 Private numcols As Int

The generated variables are already there, right?

In the B4XPage_Created subroutine we do some initialization work.

 reclst.Initialize

 delim = ";"

 devheight = GetDeviceLayoutValues.height - 40dip

The reclst list variable will be used to store the rows in. Each row contains a string of the

 B4A Scrolling Grid 3 / 8

columns data separated by a delimiter (variable delim), a semi-colon in this case ‘;’).

We will use the devheight variable to adjust the clv2 and clv3 scrolling height.

The subroutines fill_reclst and add_row_numbers make the list ready for use in the grid.

 fill_reclst

 add_row_numbers

Then we make some more calculations needed in the other subroutines:

 Dim rec As String = reclst.Get(0)

 Dim columns() As String = Regex.Split(delim,rec)

 numrows = reclst.Size

 numcols = columns.Length

 totalwidth = numcols*100dip

 totalheight = numrows*60dip

We get the first record from the list and create an array for the columns.

The number of rows is equal to the size of the reclst.

The number of columns is equal to the lenght of the columns array.

The totalwidth is equal to the number of columns times the width of a column. In this

example we use a fixed 100 dip (display independant pixels).

The totalheight uses (fixed) 60 dip times the number of rows.

And then it is time to fill the clvs with the calls to each clv:

 fill_clv1

 fill_clv2

 fill_clv3

The first subroutine is the fill_reclst. In this routine the list is filled using 2 For loops.

The comment line already reveals that you can use this app to load the contents of a csv

(comma separated values) file.

Private Sub fill_reclst

' reclst = File.ReadList(File.DirAssets,"persons.csv")

 For row = 0 To 19

 Dim colstr As String = ""

 For col = 0 To 9

 If col < 9 Then

 colstr = colstr & "row " & row & " col " & col & delim

 Else

 colstr = colstr & "row " & row & " col " & col

 End If

 Next

 reclst.Add(colstr)

 Next

 Log(reclst)

End Sub

 B4A Scrolling Grid 4 / 8

In the add_row_numbers we add a row number to each row in the reclst list. These row

numbers will be displayed in the clv2 listview. We replace the record by removing and

inserting it at the given index.

private Sub add_row_numbers

 For i = 0 To reclst.Size -1

 Dim rrec As String = reclst.get(i)

 rrec = i & delim & rrec

 reclst.RemoveAt(i)

 reclst.InsertAt(i,rrec)

 Next

End Sub

The first of 3 fill subroutines fill_clv1 will put the column headers in the clv1 listview. The
width of the clv1 is set using the Base_Resize method. Each panel contains a label and has a
event tag set to “lblhead”. The clv1 listview is added to the HorizontalScrollView hsv1.

Private Sub fill_clv1

 clv1.Base_Resize(totalwidth,totalheight)

 clv1.sv.Height = 50dip

 clv1.Clear

 Dim rec As String = reclst.get(0)

 rec = rec.SubString(rec.IndexOf(delim)+1) ' not show the first column

 Dim pnl As Panel = set_item(rec,0,"lblhead")

 clv1.Add(pnl,rec)

 clv1.sv.RemoveViewFromParent

 hsv1.Panel.AddView(clv1.sv,0dip,0dip,clv1.sv.Width,clv1.sv.Height)

End Sub

The CustomListView clv2 shows the rownumbers. Here the panel has a “lblrow” event tag.

Clicking on a row panel triggers this event. The height of the device is used to set the

scrolling height. The 110 dip represent the height of the actionbar and the height of the clv1

list.

Private Sub fill_clv2

 clv2.Base_Resize(50dip,totalheight)

 clv2.sv.Height = devheight - 110dip

 clv2.Clear

 Dim rec As String

 For i = 1 To reclst.Size -1 ' row 0 contains the header columns

 rec = reclst.Get(i)

 Dim fields() As String = Regex.Split(delim,rec)

 Dim pnl As Panel = set_item(rec,i,"lblrow")

 clv2.Add(pnl,fields(0))

 Next

End Sub

 B4A Scrolling Grid 5 / 8

The fill_clv3 subroutine is used to show the data. The first column (rownumber) and the first

row (header row) are not shown.

Private Sub fill_clv3

 clv3.Base_Resize(totalwidth,totalheight) 'totalwidth-100dip first column not show

 clv3.sv.Height = devheight - 110dip

 clv3.Clear

 For i = 1 To reclst.Size -1

 Dim rec As String = reclst.Get(i)

 rec = rec.SubString(rec.IndexOf(delim)+1) ' not show the first column

 'clv3.AddTextItem(rec,rec)

 Dim pnl As Panel = set_item(rec,i,"lbldata")

 clv3.Add(pnl,rec)

 Next

 clv3.sv.RemoveViewFromParent

 hsv1.Panel.AddView(clv3.sv,0dip,53dip,clv3.sv.Width,clv3.sv.Height)

 hsv1.Panel.Width = totalwidth 'totalwidth-100dip first column not show

End Sub

The set_item subroutine is called from the 3 fill_clv subroutines. It assembles a panel with
labels (for each column).

Private Sub set_item(rec As String, irow As Int,event As String) As Panel

 Dim clr As Int = Colors.LightGray

 Dim columns() As String = Regex.Split(delim,rec)

 Dim pnl As Panel

 pnl.Initialize("")

 If irow Mod 2 <> 0 Then

 clr = Colors.White

 End If

 For x = 0 To columns.Length -1

 Dim lbl As Label

 lbl.Initialize(event)

 lbl.Tag = irow & delim & x

 lbl.Text = columns(x)

 lbl.Padding = Array As Int (3dip, 1dip, 3dip, 1dip)

 lbl.Color = clr

 pnl.AddView(lbl,0dip+(x*100dip),0dip,100dip-3dip,60dip)

 Next

 pnl.SetLayout(0dip,0dip,(x+1)*100dip,62dip)

 Return pnl

End Sub

The ScrollChanged subroutines synchronise the 2 CustomListViews: clv2 (row numbers) and
clv3 (data).

Private Sub clv3_ScrollChanged (Offset As Int)

 clv2.sv.ScrollViewOffsetY = Offset

End Sub

 B4A Scrolling Grid 6 / 8

Private Sub clv2_ScrollChanged (Offset As Int)

 clv3.sv.ScrollViewOffsetY = Offset

End Sub

The ItemClick subroutines can be used to get some specific information from the clvs.
If you swipe from right to left to the last column then you can tap on the empty space
behind each row. This will trigger the clv1_ItemClick or clv3_ItemClick subroutine.

Private Sub clv1_ItemClick (Index As Int, Value As Object)

 Log("clv1 itemclick: " & Value)

 xui.MsgboxAsync(Value,"clv1 itemclick")

End Sub

Private Sub clv2_ItemClick (Index As Int, Value As Object)

 Log("clv2 itemclick: " & Value)

 xui.MsgboxAsync(Value,"clv2 itemclick")

End Sub

Private Sub clv3_ItemClick (Index As Int, Value As Object)

 Log("clv3 itemclick: " & Value)

 xui.MsgboxAsync(Value,"clv3 itemclick")

End Sub

When the event tags are set then these subroutines are triggered by tapping on a panel.
Notice that you can get the complete record by tapping on the row number.

private Sub lblhead_Click ' clv1

 Dim lbl As Label = Sender

 Dim tag As String = lbl.Tag

 Log("lblhead click: " & tag)

 xui.MsgboxAsync(tag,"lblhead click")

End Sub

private Sub lblrow_Click ' clv2

 Dim lbl As Label = Sender

 Dim tag As String = lbl.Tag

 Log("lblrow click: " & tag)

 xui.MsgboxAsync(tag,"lblrow click")

 Dim row As Int = tag.SubString2(0,tag.IndexOf(delim))

 xui.MsgboxAsync(reclst.Get(row),"lblrow click record")

End Sub

private Sub lbldata_Click ' clv3

 Dim lbl As Label = Sender

 Dim tag As String = lbl.Tag

 Log("lbldata click: " & tag)

 xui.MsgboxAsync(tag,"lbldata click")

End Sub

So there you have it, a scrolling grid with a fixed first column and a fixed header row.

 B4A Scrolling Grid 7 / 8

As mentioned earlier you can use this grid to display CSV-files. It could look like this:

 B4A Scrolling Grid 8 / 8

This grid will work fine with a small number of rows and columns. 20 rows with 4 columns

result in a total of 80 panels and 80 labels. But if you use 500 rows and 10 columns then the

result will be 5000 panels and 5000 labels. The memory of your smartphone is limited and

the app will stop working if the limit is reached.

You can avoid this by limiting the scrolling to a workable, practical size. The use of pages will

then make the data still accessible like in this example:

Happy coding!

