
'Class module

Sub Class_Globals

 Private mTarget As Object

 Type DBResult (Tag As Object, Columns As Map, Rows As List)

 Type DBCommand (Name As String, Parameters() As Object)

 Private link As String

 Private bc As ByteConverter

 Private T_NULL = 0, T_STRING = 1, T_SHORT = 2, T_INT = 3, T_LONG = 4, T_FLOAT = 5 _

 ,T_DOUBLE = 6, T_BOOLEAN = 7, T_BLOB = 8 As Byte

 Private VERSION As Float = 0.9

 Private tempArray(1) As Object

End Sub

'Target - The module that handles JobDone (usually Me).

'ConnectorLink - URL of the Java server.

Public Sub Initialize (Target As Object, ConnectorLink As String)

 mTarget = Target

 link = ConnectorLink

End Sub

'Sends a query request.

'Command - Query name and parameters.

'Limit - Maximum rows to return or 0 for no limit.

'Tag - An object that will be returned in the result.

Public Sub ExecuteQuery(Command As DBCommand, Limit As Int, Tag As Object)

 Dim j As HttpJob

 Dim ms As OutputStream

 Dim out2 As OutputStream = StartJob(j,ms, Tag)

 WriteObject(Command.Name, out2)

 WriteInt(Limit, out2)

 WriteList(Command.Parameters, out2)

 out2.Close

 j.PostBytes(link & "?method=query", ms.ToBytesArray)

End Sub

Public Sub ExecuteBatch(ListOfCommands As List, Tag As Object)

 Dim j As HttpJob

 Dim ms As OutputStream

 Dim out2 As OutputStream = StartJob(j,ms, Tag)

 WriteInt(ListOfCommands.Size, out2)

 For Each Command As DBCommand In ListOfCommands

 WriteObject(Command.Name, out2)

 WriteList(Command.Parameters, out2)

 Next

 out2.Close

 j.PostBytes(link & "?method=batch", ms.ToBytesArray)

End Sub

'Similar to ExecuteBatch. Sends a single command.

Public Sub ExecuteCommand(Command As DBCommand, Tag As Object)

 ExecuteBatch(Array As DBCommand(Command), Tag)

End Sub

Private Sub StartJob(j As HttpJob, MemoryStream As OutputStream, Tag As Object) As OutputStream

 j.Initialize("DBRequest", mTarget)

 j.Tag = Tag

 MemoryStream.InitializeToBytesArray(0)

 Dim compress As CompressedStreams

 Dim out As OutputStream = compress.WrapOutputStream(MemoryStream, "gzip")

 WriteObject(VERSION, out)

 Return out

End Sub

Private Sub WriteList(Parameters As List, out As OutputStream)

 Dim data() As Byte

 If Parameters = Null OR Parameters.IsInitialized = False Then

 Dim Parameters As List

 Parameters.Initialize

 End If

 data = bc.IntsToBytes(Array As Int(Parameters.Size))

 out.WriteBytes(data, 0, data.Length)

 For Each o As Object In Parameters

 WriteObject(o, out)

 Next

End Sub

Private Sub WriteObject(o As Object, out As OutputStream)

 Dim data() As Byte

 tempArray(0) = o

 If tempArray(0) = Null Then

 out.WriteBytes(Array As Byte(T_NULL), 0, 1)

 Else If tempArray(0) Is Short Then

 out.WriteBytes(Array As Byte(T_SHORT), 0, 1)

 data = bc.ShortsToBytes(Array As Short(o))

 Else If tempArray(0) Is Int Then

 out.WriteBytes(Array As Byte(T_INT), 0, 1)

 data = bc.IntsToBytes(Array As Int(o))

 Else If tempArray(0) Is Float Then

 out.WriteBytes(Array As Byte(T_FLOAT), 0, 1)

 data = bc.FloatsToBytes(Array As Float(o))

 Else If tempArray(0) Is Double Then

 out.WriteBytes(Array As Byte(T_DOUBLE), 0, 1)

 data = bc.DoublesToBytes(Array As Double(o))

 Else If tempArray(0) Is Long Then

 out.WriteBytes(Array As Byte(T_LONG), 0, 1)

 data = bc.LongsToBytes(Array As Long(o))

 Else If tempArray(0) Is Boolean Then

 out.WriteBytes(Array As Byte(T_BOOLEAN), 0, 1)

 Dim b As Boolean = 0

 Dim data(1) As Byte

 If b Then data(0) = 1 Else data(0) = 0

 Else If GetType(tempArray(0)) = "[B" Then

 data = o

 out.WriteBytes(Array As Byte(T_BLOB), 0, 1)

 WriteInt(data.Length, out)

 Else 'If o Is String Then (treat all other values as string)

 out.WriteBytes(Array As Byte(T_STRING), 0, 1)

 data = bc.StringToBytes(o, "UTF8")

 WriteInt(data.Length, out)

 End If

 If data.Length > 0 Then out.WriteBytes(data, 0, data.Length)

End Sub

Private Sub ReadObject(In As InputStream) As Object

 Dim data(1) As Byte

 In.ReadBytes(data, 0, 1)

 Select data(0)

 Case T_NULL

 Return Null

 Case T_SHORT

 Dim data(2) As Byte

 Return bc.ShortsFromBytes(ReadBytesFully(In, data, data.Length))(0)

 Case T_INT

 Dim data(4) As Byte

 Return bc.IntsFromBytes(ReadBytesFully(In, data, data.Length))(0)

 Case T_LONG

 Dim data(8) As Byte

 Return bc.LongsFromBytes(ReadBytesFully(In, data, data.Length))(0)

 Case T_FLOAT

 Dim data(4) As Byte

 Return bc.FloatsFromBytes(ReadBytesFully(In, data, data.Length))(0)

 Case T_DOUBLE

 Dim data(8) As Byte

 Return bc.DoublesFromBytes(ReadBytesFully(In, data, data.Length))(0)

 Case T_BOOLEAN

 Dim b As Byte = ReadByte(In)

 Return b = 1

 Case T_BLOB

 Dim len As Int = ReadInt(In)

 Dim data(len) As Byte

 Return ReadBytesFully(In, data, data.Length)

 Case Else

 Dim len As Int = ReadInt(In)

 Dim data(len) As Byte

 ReadBytesFully(In, data, data.Length)

 Return BytesToString(data, 0, data.Length, "UTF8")

 End Select

End Sub

Private Sub ReadBytesFully(In As InputStream, Data() As Byte, Len As Int) As Byte()

 Dim count = 0, read As Int

 Do While count < Len AND read > -1

 read = In.ReadBytes(Data, count, Len - count)

 count = count + read

 Loop

 Return Data

End Sub

Private Sub WriteInt(i As Int, out As OutputStream)

 Dim data() As Byte

 data = bc.IntsToBytes(Array As Int(i))

 out.WriteBytes(data, 0, data.Length)

End Sub

Private Sub ReadInt(In As InputStream) As Int

 Dim data(4) As Byte

 Return bc.IntsFromBytes(ReadBytesFully(In, data, data.Length))(0)

End Sub

Private Sub ReadByte(In As InputStream) As Byte

 Dim data(1) As Byte

 In.ReadBytes(data, 0, 1)

 Return data(0)

End Sub

'Handles the Job result and returns a DBResult.

Public Sub HandleJob(Job As HttpJob) As DBResult

 Dim start As Long = DateTime.Now

 Dim In As InputStream = Job.GetInputStream

 Dim cs As CompressedStreams

 In = cs.WrapInputStream(In, "gzip")

 Dim serverVersion As Float = ReadObject(In) 'ignore

 Dim method As String = ReadObject(In)

 Dim table As DBResult

 table.Initialize

 table.Columns.Initialize

 table.rows.Initialize

 table.Tag = Job.Tag

 If method = "query" Then

 Dim numberOfColumns As Int = ReadInt(In)

 For i = 0 To numberOfColumns - 1

 table.Columns.Put(ReadObject(In), i)

 Next

 Do While ReadByte(In) = 1

 Dim rowObjects(numberOfColumns) As Object

 table.rows.Add(rowObjects)

 For col = 0 To numberOfColumns - 1

 Dim o As Object = ReadObject(In)

 rowObjects(col) = o

 Next

 Loop

 Else If method = "batch" Then

 table.Columns.Put("AffectedRows", 0)

 Dim rows As Int = ReadInt(In)

 For i = 0 To rows - 1

 table.rows.Add(Array As Object(ReadInt(In)))

 Next

 End If

 In.Close

 Log("HandleJob: " & (DateTime.Now - start))

 Return table

End Sub

'Reads a file and returns the file as a bytes array.

Public Sub FileToBytes(Dir As String, FileName As String) As Byte()

 Dim out As OutputStream

 out.InitializeToBytesArray(0)

 Dim In As InputStream = File.OpenInput(Dir, FileName)

 File.Copy2(In, out)

 out.Close

 Return out.ToBytesArray

End Sub

'Converts an image to a bytes array (for BLOB fields).

Public Sub ImageToBytes(Image As Bitmap) As Byte()

 Dim out As OutputStream

 out.InitializeToBytesArray(0)

 Image.WriteToStream(out, 100, "JPEG")

 out.Close

 Return out.ToBytesArray

End Sub

'Converts a bytes array to an image (for BLOB fields).

Public Sub BytesToImage(bytes() As Byte) As Bitmap

 Dim In As InputStream

 In.InitializeFromBytesArray(bytes, 0, bytes.Length)

 Dim bmp As Bitmap

 bmp.Initialize2(In)

 Return bmp

End Sub

'Prints the table to the logs.

Public Sub PrintTable(Table As DBResult)

 Log("Tag: " & Table.Tag & ", Columns: " & Table.Columns.Size & ", Rows: " & Table.Rows.Size)

 Dim sb As StringBuilder

 sb.Initialize

 For Each col In Table.Columns.Keys

 sb.Append(col).Append(TAB)

 Next

 Log(sb.ToString)

 For Each row() As Object In Table.Rows

 Dim sb As StringBuilder

 sb.Initialize

 For Each record As Object In row

 sb.Append(record).Append(TAB)

 Next

 Log(sb.ToString)

 Next

End Sub

