Learn the Four Swift
Patterns | Swear By

Written by Bart Jacobs

Cocoacasts

Learn the Four Swift Patterns | Swear
By
Bart Jacobs

This book is for sale at
http://leanpub.com/learn-the-four-swift-patterns-i-swear-by

This version was published on 2017-11-19

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers
with the Lean Publishing process. Lean Publishing is the act of
publishing an in-progress ebook using lightweight tools and many
iterations to get reader feedback, pivot until you have the right book
and build traction once you do.

© 2017 Code Foundry BVBA

http://leanpub.com/learn-the-four-swift-patterns-i-swear-by
http://leanpub.com/
http://leanpub.com/manifesto

Contents

About Cocoacasts 1
Welcome 3
1 NamespacesinSwift. 3
2 Dependency Injectionin Swift 3
3 Value Types and Reference Types 4
4 Model-View-ViewModel in Swift 4
1 Namespaces 5
Using Structures 5
Using Enumerations 7
Conclusion. 9
2 Dependency Injection 10
What Is Dependency Injection 10
AnExample 11
Another Example 13
WhatDoYou Gain 14
TYPES . o e e 16
AWord About Singletons Lo 19
3 Value Types and Reference Types 20
Value Types & Reference Types 20
AnExample 21
Benefitsof Value Types L. 22

WhentoUseValueTypes 23

CONTENTS

4 Model-View-ViewModel 25
WhatlIslt. e 27
Advantages e 28
Problems 29
How CanWe SolveThis 30

MVVM in Practice

About Cocoacasts

My name is Bart Jacobs' and | run a mobile development company, Code
Foundry?. I've been programming for more than fifteen years, focusing
on Cocoa development soon after the introduction of the iPhone in 2007.

Over the years, I've taught thousands of people about Swift and Cocoa
development. Through my experience teaching, I've discovered and
learned about the main problems people struggle with.

! https://twitter.com/_bartjacobs
thtps://codefoundry.be

https://twitter.com/_bartjacobs
https://codefoundry.be/
https://codefoundry.be/
https://twitter.com/_bartjacobs
https://codefoundry.be/

About Cocoacasts 2

=

=

ol -—
=i

=

\

TUR ey
\

| created Cocoacasts to offer a roadmap for anyone interested in learn-
ing Swift and Cocoa development. Through Cocoacasts, | provide a clear
path to learn the tools, the language, and the frameworks you need to
master Swift and Cocoa development.

| currently work as a freelance developer and teach people about Swift
and Cocoa development. While | primarily focus on developing software
for Apple’s platforms, | consider myself a full stack developer with a love
and interest for Swift and Ruby development.

You can find me on Twitter>. Follow me and say hi. You can also follow
Cocoacasts* on Twitter if you're interested in what | teach on Cocoacasts.

3https://twitter.com/_ba rtjacobs
4https://twitter.com/_cocoacasts

https://twitter.com/_bartjacobs
https://twitter.com/_cocoacasts
https://twitter.com/_bartjacobs
https://twitter.com/_cocoacasts

Welcome

Swift is still very, very young and many developers are still figuring
out how to best use the language. There are countless tutorials about
patterns and best practices, which makes it hard to see the forest for
the trees.

In this book, you learn the four patterns | use in every Swift project |
work on. You learn how easy it is to integrate these patterns in any Swift
project. | promise that they are easy to understand and implement.

1 Namespaces in Swift

The first Swift pattern | use in every project that has any complexity to itis
namespacing with enums and structs. Swift modules make the need for
type prefixes obsolete. In Objective-C, it's a best practice to use a type
prefix to avoid naming collisions with other libraries and frameworks,
including Apple’s.

Even though modules are an important step forward, they're not as
flexible as many of us would want them to be. Swift currently doesn't
offer a solution to namespace types and constants within modules.

2 Dependency Injection in Swift

Dependency injection is a bit more daunting. Or that's what you're made
to believe. Does dependency injection sound too complex or too fancy
for your needs. The truth is that dependency injection is a fundamental
pattern that's very easy to adopt.

My favorite quote about dependency injection is a quote by James
Shore. It summarizes much of the confusion that surrounds dependency
injection.

Welcome 4

Dependency Injection is a 25-dollar term for a 5-cent concept.
a€” James Shore

When | first heard about dependency injection, | also figured it was a
technique too advanced for my needs at that time. | could do without
dependency injection, whatever it was.

3 Value Types and Reference Types

When talking about object-oriented programming, most of us intuitively
think about classes. In Swift, however, things are a bit different. While
you can continue to use classes, Swift has a few other tricks up its sleeve
that can change the way you think about software development.

This is probably the most important mindset shift when working with
Swift, especially if you're coming from a more traditional object-oriented
programming language such as Ruby, Java, or Objective-C.

4 Model-View-ViewModel in Swift

Model-View-Controller, or MVC for short, is a widely used design pattern
for architecting software applications. Cocoa applications are centered
around MVC and many of Apple’s frameworks are impregnated by the
pattern.

But there’s an alternative that resolves many of the issues MVC suf-
fers from, Model-View-ViewModel. You've probably heard of MVVM.
But why is it becoming increasingly popular in the Swift community?
And why have other languages and frameworks embraced Model-View-
ViewModel for years?

| hope that my book helps you in some way, big or small. If it does, then
let me know. I'd love to hear from you.

Enjoy,
Bart

1 Namespaces

The first Swift pattern | use in every project that has any complexity toiitis
namespacing with enums and structs. Swift modules make the need for
class prefixes obsolete. In Objective-C, it's a best practice to use a class
prefix to avoid naming collisions with other libraries and frameworks,
including Apple’s.

Even though modules are an important step forward, they are not as
flexible as many of us would want them to be. Swift currently doesn't
offer a solution to namespace types and constants within modules.

A very common problem | run into when working with Swift is defining
constants in such a way that they are easy to understand by anyone
working on the project. In Objective-C, this would look something like
this.

NSString * const CCAPIBaseURL = @"https://example.com/v1";
NSString * const CCAPIToken = @"sdfiug8186qfé68qsdf18389qsh4niuyl";

This works fine, but it isn't pretty and easy to read. Even though Swift
doesn't support namespaces within modules, there are several viable
solutions to this problem.

Using Structures

The option | commonly adopt in Swift projects uses structures to create
namespaces. The solution looks something like this.

	Table of Contents
	About Cocoacasts
	Welcome
	1 Namespaces in Swift
	2 Dependency Injection in Swift
	3 Value Types and Reference Types
	4 Model-View-ViewModel in Swift

	1 Namespaces
	Using Structures
	Using Enumerations
	Conclusion

	2 Dependency Injection
	What Is Dependency Injection
	An Example
	Another Example
	What Do You Gain
	Types
	A Word About Singletons

	3 Value Types and Reference Types
	Value Types & Reference Types
	An Example
	Benefits of Value Types
	When to Use Value Types

	4 Model-View-ViewModel
	What Is It
	Advantages
	Problems
	How Can We Solve This
	MVVM in Practice

