Have a point and a line on a map and need the shortest distance (in meters) between that point and that line.
The point is set by a latitude, longitude type and the lines is set by 2 of these types.
This seems the simplest way to do this:
For distance up To a few thousands meters I would simplify the issue from sphere To plane. Then, the issue Is pretty simply As a easy triangle calculation can be used:
We have points A And B And look For a distance X To line AB. Then:
Location a;
Location b;
Location x;
double ax = a.distanceTo(x)
double alfa = ((Math.abs(a.bearingTo(b) - a.bearingTo(x))) / 180) * Math.PI
double distance = Math.sin(alfa) * ax
Having some trouble though to translate this to B4A and sofar been unable to get the right result.
For the distance I have this Sub:
	
	
	
	
	
	
	
		
			
			
			
			
			
		
	
	
	
		
	
	
		
	
And for the bearing (line direction) I have this Sub (thanks to Klaus):
	
	
	
	
	
	
	
		
			
			
			
			
			
		
	
	
	
		
	
	
		
	
Tried various coding, for example:
	
	
	
	
	
	
	
		
			
			
			
			
			
		
	
	
	
		
	
	
		
	
But as said, not got the right results yet.
Any suggestion how this should be coded?
RBS
			
			The point is set by a latitude, longitude type and the lines is set by 2 of these types.
This seems the simplest way to do this:
For distance up To a few thousands meters I would simplify the issue from sphere To plane. Then, the issue Is pretty simply As a easy triangle calculation can be used:
We have points A And B And look For a distance X To line AB. Then:
Location a;
Location b;
Location x;
double ax = a.distanceTo(x)
double alfa = ((Math.abs(a.bearingTo(b) - a.bearingTo(x))) / 180) * Math.PI
double distance = Math.sin(alfa) * ax
Having some trouble though to translate this to B4A and sofar been unable to get the right result.
For the distance I have this Sub:
			
				B4X:
			
		
		
		Public Sub DistVincenty(tLL1 As TMapLatLng, tLL2 As TMapLatLng) As ResumableSub
    'INPUTS: Latitude and Longitude of initial and destination points in decimal format.
    'OUTPUT: Distance between the two points in Meters.
    '
    '=================================================================================
    ' Calculate geodesic distance (in m) between two points specified by latitude/longitude (in numeric [decimal] degrees)
    ' using Vincenty inverse formula for ellipsoids
    '=================================================================================
    ' Code has been ported by lost_species from www.aliencoffee.co.uk to VBA from javascript published at:
    ' http://www.movable-type.co.uk/scripts/latlong-vincenty.html
    ' * from: Vincenty inverse formula - T Vincenty, "Direct and Inverse Solutions of Geodesics on the
    ' *       Ellipsoid with application of nested equations", Survey Review, vol XXII no 176, 1975
    ' *       http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
    'Additional Reference: http://en.wikipedia.org/wiki/Vincenty%27s_formulae
    '=================================================================================
    ' Copyright lost_species 2008 LGPL http://www.fsf.org/licensing/licenses/lgpl.html
    '=================================================================================
    ' Code modifications to prevent "Formula Too Complex" errors in Excel (2010) VBA implementation
    ' provided by Jerry Latham, Microsoft MVP Excel Group, 2005-2011
    ' July 23 2011
    '=================================================================================
    Dim low_a As Double
    Dim low_b As Double
    Dim f As Double
    Dim L As Double
    Dim U1 As Double
    Dim U2 As Double
    Dim sinU1 As Double
    Dim sinU2 As Double
    Dim cosU1 As Double
    Dim cosU2 As Double
    Dim lambda As Double
    Dim lambdaP As Double
    Dim iterLimit As Int
    Dim sinLambda As Double
    Dim cosLambda As Double
    Dim sinSigma As Double
    Dim cosSigma As Double
    Dim sigma As Double
    Dim sinAlpha As Double
    Dim cosSqAlpha As Double
    Dim cos2SigmaM As Double
    Dim C As Double
    Dim uSq As Double
    Dim upper_A As Double
    Dim upper_B As Double
    Dim deltaSigma As Double
    Dim s As Double    ' final result, will be returned rounded to 3 decimals (mm).
    'added by JLatham to break up "too Complex" formulas
    'into pieces to properly calculate those formulas as noted below
    'and to prevent overflow errors when using Excel 2010 x64 on Windows 7 x64 systems
    Dim P1 As Double    ' used to calculate a portion of a complex formula
    Dim P2 As Double    ' used to calculate a portion of a complex formula
    Dim P3 As Double    ' used to calculate a portion of a complex formula
    'See http://en.wikipedia.org/wiki/World_Geodetic_System
    'for information on various Ellipsoid parameters for other standards.
    'low_a and low_b in meters
    ' === GRS-80 ===
    ' low_a = 6378137
    ' low_b = 6356752.314245
    ' f = 1 / 298.257223563
    '
    ' === Airy 1830 ===  Reported best accuracy for England and Northern Europe.
    low_a = 6377563.396
    low_b = 6356256.910
    f = 1 / 299.3249646
    '
    ' === International 1924 ===
    ' low_a = 6378388
    ' low_b = 6356911.946
    ' f = 1 / 297
    '
    ' === Clarke Model 1880 ===
    ' low_a = 6378249.145
    ' low_b = 6356514.86955
    ' f = 1 / 293.465
    '
    ' === GRS-67 ===
    ' low_a = 6378160
    ' low_b = 6356774.719
    ' f = 1 / 298.247167
    '=== WGS-84 Ellipsoid Parameters ===
'    low_a = 6378137       ' +/- 2m
'    low_b = 6356752.3142
'    f = 1 / 298.257223563
    '====================================
    L = ToRad(tLL2.fLng - tLL1.fLng)
    U1 = ATan((1 - f) * Tan(ToRad(tLL1.fLat)))
    U2 = ATan((1 - f) * Tan(ToRad(tLL2.fLat)))
    sinU1 = Sin(U1)
    cosU1 = Cos(U1)
    sinU2 = Sin(U2)
    cosU2 = Cos(U2)
    
    lambda = L
    lambdaP = 2 * cPI
    iterLimit = 100    ' can be set as low as 20 if desired.
    Do While (Abs(lambda - lambdaP) > dEPSILON) And (iterLimit > 0)
        iterLimit = iterLimit - 1
        sinLambda = Sin(lambda)
        cosLambda = Cos(lambda)
        sinSigma = Sqrt(Power(cosU2 * sinLambda, 2) + Power(cosU1 * sinU2 - sinU1 * cosU2 * cosLambda, 2))
        If sinSigma = 0 Then
            Return 0  'co-incident points
         End If
        cosSigma = sinU1 * sinU2 + cosU1 * cosU2 * cosLambda
        
        '----------------------------------------------------------------------------------
        sigma = ATan2(sinSigma, cosSigma) 'arguments need to be reversed
        'sigma = ATan2(cosSigma, sinSigma) '<<<<<<<<<<<<<<<<<<<<<<<<<<<< original VBA code!
        '----------------------------------------------------------------------------------
        
        sinAlpha = cosU1 * cosU2 * sinLambda / sinSigma
        cosSqAlpha = 1 - sinAlpha * sinAlpha
        If cosSqAlpha = 0 Then    'check for a divide by zero
            cos2SigmaM = 0    '2 points on the equator
        Else
            cos2SigmaM = cosSigma - 2 * sinU1 * sinU2 / cosSqAlpha
        End If
        
        C = f / 16 * cosSqAlpha * (4 + f * (4 - 3 * cosSqAlpha))
        lambdaP = lambda
        'the original calculation is "Too Complex" for Excel VBA to deal with
        'so it is broken into segments to calculate without that issue
        'the original implementation to calculate lambda
        'lambda = L + (1 - C) * f * sinAlpha * _
         '(sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * (-1 + 2 * (cos2SigmaM ^ 2))))
        'calculate portions
        P1 = -1 + 2 * Power(cos2SigmaM, 2)
        P2 = (sigma + C * sinSigma * (cos2SigmaM + C * cosSigma * P1))
        'complete the calculation
        lambda = L + (1 - C) * f * sinAlpha * P2
        
    Loop
    If iterLimit < 1 Then
        Log("iteration limit has been reached, something didn't work.")
        Return 0
    End If
    
    uSq = cosSqAlpha * (Power(low_a, 2) - Power(low_b, 2)) / Power(low_b, 2)
    'the original calculation is "Too Complex" for Excel VBA to deal with
    'so it is broken into segments to calculate without that issue
    'the original implementation to calculate upper_A
    'upper_A = 1 + uSq / 16384 * (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)))
    'calculate one piece of the equation
    P1 = (4096 + uSq * (-768 + uSq * (320 - 175 * uSq)))
    'complete the calculation
    upper_A = 1 + uSq / 16384 * P1
    'oddly enough, upper_B calculates without any issues - JLatham
    upper_B = uSq / 1024 * (256 + uSq * (-128 + uSq * (74 - 47 * uSq)))
    'the original calculation is "Too Complex" for Excel VBA to deal with
    'so it is broken into segments to calculate without that issue
    'the original implementation to calculate deltaSigma
    'deltaSigma = upper_B * sinSigma * (cos2SigmaM + upper_B / 4 * (cosSigma * (-1 + 2 * cos2SigmaM ^ 2) _
    ' - upper_B / 6 * cos2SigmaM * (-3 + 4 * sinSigma ^ 2) * (-3 + 4 * cos2SigmaM ^ 2)))
    'calculate pieces of the deltaSigma formula
    'broken into 3 pieces to prevent overflow error that may occur in
    'Excel 2010 64-bit version.
    P1 = (-3 + 4 * Power(sinSigma, 2)) * (-3 + 4 * Power(cos2SigmaM, 2))
    P2 = upper_B * sinSigma
    P3 = (cos2SigmaM + upper_B / 4 * (cosSigma * (-1 + 2 * Power(cos2SigmaM, 2)) - upper_B / 6 * cos2SigmaM * P1))
    'complete the deltaSigma calculation
    deltaSigma = P2 * P3
    'calculate the distance
    s = low_b * upper_A * (sigma - deltaSigma)
    
    'round distance to millimeters
    Return s
End SubAnd for the bearing (line direction) I have this Sub (thanks to Klaus):
			
				B4X:
			
		
		
		Sub GetDirectionOfTwoLatLngs(tLL1 As TMapLatLng, tLL2 As TMapLatLng) As Double
    
    Dim x1 As Double
    Dim y1 As Double
    Dim x2 As Double
    Dim y2 As Double
    Dim dAngle As Double
    
    x1 = tLL1.fLng * CosD(tLL1.fLat)
    y1 = tLL1.flat
    x2 = tLL2.fLng * CosD(tLL2.fLat)
    y2 = tLL2.flat
    
    dAngle = ATan2D((y1 - y2), (x2 - x1)) 'trigonometric angle 3 o'clock, positive clockwise
    dAngle = dAngle + 90 'angle 12 o'clock, positve clockwise
    dAngle = dAngle + 360 'only positive values
    dAngle = dAngle Mod 360 'values between 0 and 360
    
    Return dAngle
End SubTried various coding, for example:
			
				B4X:
			
		
		
		'Supplied map point and both ends of map line
Sub GetDistanceFromRoute(tLLX As TMapLatLng, tLLA As TMapLatLng, tLLB As TMapLatLng) As ResumableSub
    
'   For distance up to a few thousands meters I would simplify the issue from sphere to plane.
'   Then, the issue is pretty simply as an easy triangle calculation can be used:
'    We have points A and B And look for a distance X to line AB. Then:
'    Location a;
'    Location b;
'    Location x;
'    double ax = a.distanceTo(x)
'    double alfa = ((Math.abs(a.bearingTo(b) - a.bearingTo(x))) / 180)    * Math.PI
'    double distance = Math.sin(alfa) * ax
    Dim dDistanceFromRoute As Double
    Dim dBearingDiff As Double
    
    Dim rs As ResumableSub = MapUtilities.DistVincenty(tLLA, tLLX)
    Wait For (rs) Complete (dDistanceLX As Double)
    
    dBearingDiff = (Abs(GetDirectionOfTwoLatLngs(tLLA, tLLB) - GetDirectionOfTwoLatLngs(tLLA, tLLX)) / 180) * dPi
    
    dDistanceFromRoute = Abs(Sin(dBearingDiff)) * dDistanceLX
    
    Return dDistanceFromRoute
    
End SubBut as said, not got the right results yet.
Any suggestion how this should be coded?
RBS
 
				
 
 
		 
 
		 
						
					 
						
					 
 
		 
 
		 
 
		 
 
		